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1. Introduction

Six dimensional supergravity models have several interesting properties. Salam and Sezgin
obtained static solutions in which the six dimensional gauged supergravity compactifies
on a product spacetime of four dimensional Minkowski and a two dimensional sphere,
My x S? [l. Remarkably this supergravity model admits the supersymmetric Minkowski
vacuum while many other supergravity models do not. The modern interpretation of this
property is that the solution of this theory is compatible with the introduction of branes
into the spacetime. As with any massive defect, this then leads of course to the appearance
of a deficit angle in the two internal spatial dimensions, as a gravitational response to the
tensions of the branes [}, ff]. The resulting geometry looks like a rugby ball solution where
the branes are located at the north and south pole of the ball. Gibbons, Guven and Pope
(GGP) [ showed that the Salam-Sezgin vacuum is in fact the unique one with a four
dimensional maximal symmetry and general static solutions with an axisymmetric internal
space.

The observation in ref. [[f] that the four dimensional spacetime is always Minkowski
even in the presence of branes with tensions forms the basis of the interesting supersymmet-
ric large extra dimension (SLED) scenario, a recent approach to solving the cosmological



constant and dark energy problems [[j]. If only for this reason, such is the prize at stake, it
makes this six dimensional supergravity interesting from a cosmological point of view, al-
though we note that cosmology in six dimensional supergravity has previously been studied
in the context of Kaluza-Klein cosmology [f, [f]. One of the neatest aspects of the SLED
model is that a 3-brane with any tension in six dimensional spacetime induces only the cor-
responding deficit angle and maintains a vanishing four dimensional cosmological constant,
at least at the classical level. This feature is often referred to as a “self-tuning mechanism”
of the effective four dimensional cosmological constant and would be expected to be part
of the solution to the cosmological constant problem (although we still have to account for
the affect of quantum corrections).

Although the SLED scenario has enjoyed a number of successes, open questions still
remain. We are particularly interested in establishing whether the self-tuning mechanism
really works in a time dependent evolving Universe (another attempt, see [[]). Previous
authors have argued that the self-tuning of the four dimensional cosmological constant does
not work at least in non-supersymmetric six dimensional Einstein Maxwell theories [§—[LT].
The work we present here has a number of overlaps with that of Tolley et al [1J], (and
more recently with that of Kobayashi and Minamitsuji [[3J]) who have obtained a series
of solutions to the dynamical system based on an elegant scaling argument. We believe
that the explicit expressions presented here of exact time-dependent solutions to the six
dimensional supergravity model are given for the first time. We begin by deriving the
underlying field equations in section f. This is followed in section [ with a demonstration
that it is impossible to have static internal spaces with a corresponding expanding external
three dimensional space. We extend the analysis to a fully time dependent case in section
and find a new class of exact solutions showing the nature of the instability and resulting
evolution of the compact dimensions. Finally we conclude in section fj.

2. The basic field equations

Concentrating on the bosonic field contents of this model, we have the metric gysn, dilaton
¢, a U(1) gauge field Ap; with field strength Fysn and an antisymmetric tensor field By
whose corresponding field strength is expressed as

Gyunp = Oy Byp + FynAp + cyclic permutations. (2.1)
The lagrangian density for the bosonic sector is given by

1 1 e 20 e ?
ﬁSUGRA = §R — §8M¢8M¢ — YGMNPGMNP — TFMNFMN — 292€¢7 (22)

where g is the U(1) gauge coupling.! Here M, N run over all the spacetime indices and
we work on the two - sphere of radius r with the six dimensional (reduced) Planck scale
M = 1.

!Note that our definition of ¢ and g are different from those in GGP. They are related through —2@ours =
¢GGP and ggurs = 29(2}GP'



The field equations are

0+ —— GV Guwp + MV Eyy - 2g% =0, (23)

D (e*wGMNP ) =0, (2.4)
Dy <e—¢FMN> e BGMNPR L =0, (2.5)
e 2%

1
—RyN + Oy pON O + —~5 <GMPQGNPQ - EGOPQGOPQQMN>

_ 1
+e ? <FMPFNP — gFPQFPQgMN> +g%e®gun = 0, (2.6)

and following the usual ansatz adopted for simplicity, from now on, we consider the case
of a vanishing three form field strength

GMNP — . (2.7)

Then, above field equations become

5
06+ S PN Fyy - 2g% =0, (28)

Dar (e—¢FMN> —0, (2.9)
1
—RMN + 8M¢8N¢ + 67(;5 (FMPFNP — gFPQFPQgMN> + g2€¢gMN = 0. (210)
The metric ansatz we adopt is
ds® = U(z™,t)%dsy + r(t)*ds3,
dsi = —dt* + &;jdx'da?,

ds3 = Ypn (z™)dz™dz", (2.11)
where ¢, run over the usual three spatial indices, m,n run over the extra two spatial

indices and 7y, (™) is an arbitrary two-dimensional metric. With this metric, the two
form field strength takes the form of

Fo=Fum=0,
Fon = F(t, 2™)emn (2.12)
with €,,, being the anti-symmetric tensor. Here, the use of Greek indices denote the four

spacetime coordinates (i.e. u = (0,7)). With the metric ansatz eq. (R.11]), we write each
component of the Einstein equations, (0 —0), (0 —m), (i — j), (m — n) respectively as

aoU 807’ aoTaoU 807“ 2
- 2 - _ = -
3<U>,o+ [<T>,0 r U+<7">

2 1 efd)
_ﬁfymnamUanU - ﬁDm ('YmnanUQ) + ?FJDQ}WPQ(J2 — 92€¢U2 = 0, (213)

3mU 80U 3mU80T
S 4 ==) -4 md =0, (2.14
<U>,0+<U>m nO O | gyt = 0. (2.14)
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(U, (AUN 00U dor
U ), U U r

)

U 8,U U? 1 —¢
o U 2t ﬁDm(ananUQ) - %FPQFPQUZ +¢%e®U? =0, (2.15)

2 2
<80T > + 460—U@ - Ymn + 4Dn <
,0

+2

3mU> 0 U 0,U /
+4

o770 Tro _Rmmm’n
202 U r U? U U U

_ 1
+am¢an¢ +e ¢ <FmPFPn - gFPQFPngn> + g2e¢gmn = 0. (216)

2.1 The static Gibbons, Guven and Pope solution

Before discussing the time dependent solutions of this system, we recall the derivation of
the static solution originally obtained by Gibbons, Guven and Pope (GGP) [H]. When we
take 7(t) = 1, U(z™,t) = W(2™) and ¢ = ¢(z™), the Einstein equations and the equation
of motion for the dilaton ¢ reduce to

1 e ?
— A Pm (W) + == FP9Fpg - g% = 0, (2.17)
OmW oW 0, W /
—4D, —4 R™ omin
< W ) w W *
1
- m(ban(b - e¢ (FmPFnP - gFPQFPQ’Ymn> - 92€¢7mn = 07 (2'18)
and .
1 _
wralm (’YmnW43"§> * %F M Fyy — g% =0, (2.19)
leading to the GGP solution:
1
¢=—5n wH. (2.20)

The equation of motion (R.9) for F},, leads to the solution to eq. (.12)

F= —% o4 = —%W‘G, (2.21)

where we have used eq. (2.20). Note that ¢ can be interpreted as a magnetic charge.
It will prove useful to recall the explicit solution for ¢ and 7., as presented by GGP [,

4]
Ymn = diag(’%’ra’}’i/),z/)%
—¢ =02
e e %r
(YVrrs Vo) = <—2’—f2 > (2.22)
0 1
e = @, (2.23)
fi
with
2 2
L 1
1 8
2 2
2= = 22 2.25
0 g2 1 2 ( )



In the following sections we begin to explore the dynamical equations by allowing the
scale factors and the fields to become time dependent.

3. Only one evolving space is not a solution

3.1 Time dependent U

Ideally what we want to obtain is a solution which describes the expansion of our three
space dimensions with a static extra dimensional space. As a first step towards obtaining
it, we make the ansatz of a static internal space r = 1, and a static dilaton ¢ = ¢(a™).

This combination makes sense in that the relation r2

o €~? has previously been obtained
in hence the dilaton would be static if r is static. In fact, in the following subsection,
we will show that allowing for a time dependence of ¢ does not improve the possibility of

obtaining static r solutions. The field equations are reduced to
3 (U 1 —
<O—> A Dm (0" + = FPOFpg — g = 0, (3.1)
0

2\ U 404
Ol U
mZ ) g (B2} = 2
<U )O <U>m 0,(3)

) )

1 (U aU\? 2 1 N
——(22) —(22) S+ D0 UY) , — = FFFpg + g% = 0, (3.3
U2<U>O <U> 2 a0 )73 rotoe” =0,(33)

OomU OomU 0,U /
4D, 4 - R™ mm/n
( U > * u U R

)

_ 1
+8m¢8n¢ +e ¢ (FmPFPn - gFPQFPQ’Ymn> + 92€¢'Ymn = 07 (3-4)

1

-6
7a Dm ('ym”U“arL%) + %FMNFMN —g%? = 0. (3.5)

Although the equations look intractible, we can make progress by noting that because

<8mU> 00U AUOU <30U>
0 m

U U U? U (36)

) )

then from eq. (B.2),

(5),-(3) -

) )

The general solution of U is therefore given by InU = Ina(t) + In W (2™) where a(t) and
W (2z"™) are integration functions. Thus, we find that U has to take the separable form of
U = a(t)W (2™). The field equations (B.1) and (B.3) can then be reduced to

1 e ?

C(xm) o 4|/]/4Dm(7mnan” 4) + ?FPQFPQ - 92€¢ =0, (3'8)
3 (Ooa 1 [(Ooa 2 (9’ _ .,
U2<a>,o_U2<a>,o+U2<a> = 0", (39)



which after some algebra leads to

ap
t) = 3.10
alt) = 7 (3.10)
Clam) = 3 (3.11)
agW (zm)?’ '
with ag and ¢y being integration constants.
However, from eqs. (B.1]) and (B.§), we also know that
Dy, (Y™ U*0,(In U* 4 2¢)) — 4U*C/(2™) = 0, (3.12)

which is conflict, for any non-vanishing U on the internal space, with the fact that the extra
two dimensional space is compact. In other words, if we integrate both sides of eq. (B.19)
over the compact extra space, we see that the first term on the left hand side vanishes as it
is a total derivative while the second term does not. Hence, there is an inconsistency and
so we conclude there is no static solution for the compact space with this ansatz for U.

There is a caveat to this argument. We have implicitly assumed that the extra space
is smooth. However, if we allow the extra space to be singular then it is possible that,
de-Sitter type solutions may be obtained [[Ld].

3.2 Time dependent U and ¢, but static r

We now allow for a time-dependent dilaton. The field equations are

oU 1 —¢
’ <O—> + 006006 = g3 D (7" 00U") + = FPOFpQU? — U = 0, (313)
0

U
_(@"—U> +4(5°_U> 00000 = 0, (3.14)
0 m

)

U U

) )

2 _
1 ¢
(a)—U) +2 (a)—U) — —— Dy, (Y"0,U*) + %FPQFPQW —g%e®U? =0, (3.15)
0

U U 402
4D, <6mU> +46mU U R

)

U U U
1
+0m O + e~ ? (FmPFpn — gFPQFPngn> + %% g = 0, (3.16)
¢
2

1

—mao <U230

) + iDm <U4fym"an?> + dJﬂ‘ﬂvz«}wN —g%® = 0. (3.17)
U4 2 8
If we again assume the form U = a(t)W (2™), then the (0 — m) component of the Einstein
equation implies ¢ = ¢(¢). In addition, from the ¢ equation of motion, using the solution
for the flux F' oc U(t,z™)~* , we find that W = 1 because each term has a different
dependence on W and the ¢ equation of motion can not be satisfied if U depends on z™.
Hence we must have U = a(t) and moreover since the spacetime no longer has a non-trivial
warp factor W (z™), it can not be warped. Given the above result, the equations of motion



now can be written as:

o —¢
3 (La> + OopOod + %FPQFPQQQ —g%e%a® = 0, (3.18)
a
0
doa da\> e ? o 2 2.4 2
<—> +2 <—> + 5 F Q@Fpga® — g*e®a® = 0, (3.19)
a ), a
1 -9
——0o <a260§> + %FMNFMNQQ — g%e%a® = 0, (3.20)
a
3 /
Zefd’FPQFpQ +2¢g%¢® = g™ R™ i (2™) = Re(= const). (3.21)

Notice that the term gm”Rm/mm/n could in principle be a function of ™, but in this case
it is not allowed by eq. (B.21]) as the left hand side depends only on . This fact means
that the compact extra space must be a constant curvature two dimensional sphere. Here
there is no way to introduce branes which induce a deficit angle and deform a sphere with a
constant curvature into a rugby ball shape. Therefore, we can see that this ansatz, namely
varying U and ¢ with static r can not lead to satisfactory solutions.

3.3 Time dependent r and ¢, but static U

Finally, let us try to obtain a solution of the static three space with a dynamical extra
dimension. If we take r = r(t) and ¢ = ¢(t,2™), but U = W (z™), then Einstein’s
equations and the equation of motion for ¢ are

2 [<¥>0 + (@)2 + Do — DM(ZZ;;ZWZL) + %FPQFPQ —g’e” =0, (3.22)
_48’”7”/@ OO = 0, (3.23)
DW(ZZ‘L&WL) - %FPQFPQ +g%e? =0, (3.24)

4D, (8”‘%/W> + 48”I;VW a%/W — R™ i — 2—52 (907%) o vmn

_ 1
+ Oy $Onp + €~ ® (FmPFpn — gFPQFPngn> + %% gmn = 0, (3.25)

1 1 e ?
o (ﬁa%) + 773 Dm (W“fym”an%) + ?FMNFMN —g%e? = 0. (3.26)

Now provided that ¢(t,2™) can be decomposed as ¢(t,z™) = ¢(t) + ¢(z™) and F depends
only on z™, then eqs. (B.29) and (B.24) can be reduced to

T(t)2€¢(t) = 1, (3.27)
2
1
<@> + (@) + =8y$dod = 0, (3.28)
r /) r 2
Dy, mnanW4 —o(z™) m
(74W4 ) ¢ — FPFpq + %) = 0, (3.29)



Unfortunately, the solution of these equations are not compatible with
dor? =0, (3.30)
which can be obtained from eq. (B.26) using eq. (B.29). Thus, we once again see that there

is no consistent solution with this ansatz.

4. Time dependent solutions with dymanical », U and ¢

Having tried unsuccessfully to obtain static solutions for r and U, we now look for dynamical
solutions where all the key fields r,U and ¢ are time dependent. We again make a series
of ansatz, in this case ¢(¢,2™) = ¢(t) + ¢(a™), and assume the separable form of U =

a(t)W (z™). The Einstein equations and the equation of motion for ¢ are:

3 a()a 2 607’ 607’ 80(1 80"" 2
2\ e + = || — -+ | —
a / U r)o roa r
—
Y, W) + %FPQFPQ —g%e® =0, (4.1)

Om W Opr
L e = 4.2
o 00pOmd = 0, (4.2)

1 (%a) | 2 (%a\’ 2 dader
U2\ a 0 U2\ a U2 a r

0090
+ 2

1
gz Pm (

1 e ?
_7Dm mn ., 4 _FPQF 42,9 — 4.
Ar2 VA (Y™ O W) + 3 PQ —g-e 0, (4.3)
O W O W 0, W / or? Ooa Oyr 12
4Dn 4 — R™ mm/'n — 19 4 mn
<W>+ wowW [<2W2>70+ a r Uz
1
+am¢an¢ + eid) (FmPFPn - gFPQFPngn> +92€¢gmn = 07 (44)
1 o 1 ® e ?
———0, 2029, ——D,, w4 O, = —_FMNFEp —g%? =0. (4.5
Ui °<r 02>+W4r2 ( Oy ) TR MN = g€ (45)

Under the additional ansatz that e?)72 = 1 (motivated by the observation that 7 o
e~? [B]), which is equivalent to

g = —2—67?7“ , (4.6)
we see that eq. (f.2), leads to
Om
=9 4.
Ot = 22 (47)

as in the GGP solution. If we further assume that the field strength F'is static and only
depends on x™, then the field equations eqs. (1), (J£3) and ([.H) coupled with eq. ([£7)
can be rewritten as the following differential equation which depends only on ™,

D mn 4 _¢ 2
O™ W) O g e ) (48)

C="™) - AWt 8




where, C'(2™) is given by

2 2
Ca™) = — |3 <@> +2 <@> _pdrda <@> + 30¢30¢]
U a /)y r/)o roa T
_ (e, (Ba) ,%a dor
U? a ) a a r
1 ¢
= —700 <T2U280§> : (4.9)

each equality in eq. ([L.9) arising from egs. (1)), (£.J) and ([LF), respectively.
4.1 Power law solutions for r and a

Egs. ({9) and (f.9) still look very difficult to solve directly from first principles, and so
instead we will try to obtain solutions by assuming the form of r and a, and looking for
self-consistency in the solutions. As a first attempt we assume power law behaviour for
them, namely:

aoxt", rocth. (4.10)

The three equalities in eq. (.9) coupled with eq. (f.f)) now become

tQ(HT—N—l) )
Cz™) = T(—?m —2n, — 2n,n + 6n;)
$2(nr—n—1) (2 ) 1)
= ——n,.(2n 4+ 2n, —
W2
$2(nr—n—1)
= Tn&n +2n, —1). (4.11)

There are two possible ways in which C'(z™) can be a function of only x™, as required
by eq. ([.§). The first is if the time dependent prefactor vanishes which corresponds to
n, —n —1 = 0. The second way is if the right hand side of each of the terms vanish, which
corresponds to the brackets vanishing in eq. (f.11]). The former is precisely the structure
found by Tolley et al [IJ] based on a scaling argument for the scale factors. However, the
metric ansatz of g, in [ is slightly different to ours (R.11)). In particular it follows that
the condition n, —n — 1 = 0 is not a solution in our case, because it can not satisfy all
three equalities in eqgs. (.11)). In fact we determine the values of n and ng in eqgs. (4.11)
by equating the coefficients:

—3n — 2n, — 2n,n + 602 = n,.(2n + 2n, — 1) = n(2n + 2n, — 1). (4.12)

This has the non trivial solution

2+
_ 4‘/§, ) (4.13)

This in turn gives C(z™) = 0 which is consistent with the above discussions and is com-

n

patible with eq. (f.4) too, because the solution satisfies

Oor? Ooa Opr 12
0



Notice that in this case, we obtain identical solutions for F'; ¢ and W as found in the
GGP solution. This is as expected, since the """ dependent part of the field equations are
identical to that of the GGP solution. In this sense we have obtained the time dependent
version of the GGP solution.

From the metric ansatz eq. (R.11)) it follows that the time ¢ is actually the conformal
time in the usual sense. The “cosmic time” 7 can therefore be defined as dr o« t"dt, from
which we obtain

ds* = W(z™)?[~d7? + a(7)?6;jdz" dz’] + r(7)?ds3,

a(T) T"/("+1),

r(r) oc 7/ (D) (4.15)
in terms of the cosmic time.

4.2 Exponential solutions for r and a

The next obvious step is to assume an exponential form
a(t) =€, r(t) = et (4.16)

where h and h, are constants. In this case, eq. (.9) with eq. (f.6) leads to

o2(he—h)t
o2(he—h)t

= WQhr(h + hy)
o2(he—h)t

which now has a non trivial solution h = h,. Then, C(2™) is given by
4h?

C(z™) = W (4.18)

Thus, we obtain the equations of motion of the ™ dependent part of the fields to be

m

4h? B D (™0, W*) n e~

)
FPREL, — g2e?=™) — 0, (4.19
W (2m)?2 AW PQ —g°¢ , (4.19)

2

%Wmn - 8m¢8n¢—e_¢($m) (FmPFpn— éFPQFPQ%nn> —gzeqb(xm)vmn = 0. (4.20)
Something significant can now be seen. Recall that we have equation ([.7), relating ¢ and
W (2™). Given the solution we have just obtained, we see that in eq. (.20), by introducing
%> = g% — 4h?, then a new solution to the system is obtained which looks identical to the
original ™ part of the GGP solution but with our redefined gauge coupling §* replacing
the original g% coupling. Obviously, the h — 0 limit corresponds to the original static GGP
solution. Hence, we have obtained the explicit expression of the solution including the =
dependent part. However, notice that since h is just a constant it could in principle take

,10,



any value. In particular, for 4h? > g2, corresponding to a negative G2, we find that the
™ dependent part of the solution has only differs slightly from that obtained in GGP. We
show this and give the actual solution for the case of vanishing and negative §* in appendix
B. The line element of this solution with such a nonvanishing h is rewritten as

ds? = W (z™)?[—dr? + (h7)?0;dz"dx?] + (h7)?ds3, (4.21)

in terms of the cosmic time. This solution is the same as that found in ref. [[IJ], however,
the ™ dependence of the solution was not explicitely solved for there. Here, we have
shown that it is same as that of the GGP solution.

5. Conclusions

We have derived a new class of exact time dependent solutions in a six dimensional gauged
supergravity compactified on a two dimensional axisymmetric space. Under the assumption
of a separable form of U we showed that there is no solution expressing the either an
expanding four dimensional universe with a static internal space or visa versa. Exact
solutions we obtained involved all the dimensions either expanding or contracting which
means the eventual decompactification or collapse of the extra dimension, indicating an
instability of Salam-Sezgin, (Minkowski), x 5?2, spacetime for the case with the absence of
the maximal symmetry in the four dimensional spacetime.
In the above analysis, we did not include into the action brane terms such as

Shrane = Z/d4xﬂ = Z / Bz T;6@) (2™ — 27, (5.1)

where T; is the tension of the ‘i-th’ brane and z}* denotes the position of the brane in the
internal space. However, we can easily introduce such brane terms, their affect being to
induce the deficit angle in the internal space. The topological condition for the gauge field
Ay is the same as we previously obtained for the static solutions, because the solution of
the gauge field strength Fj,, is unchanged in the presence of the branes. As is discussed
in [, for the case of 7“8 # r? in eq. (R-24), while one pole can be smooth, the other has a
deficit angle ,

1) ]

5. =1- r_g' (5.2)
Combining eq. (R.25) and the topological condition, the Dirac quantization condition, for
the gauge field Ay; becomes [, [[7],

=N, (5.3)

leading to the quantized deficit angle

0
— =1-N? 5.4
> , (5.4)
which was previously obtained for the static solution with IV being an integer []. However,
for the new solution in section IV B, eq. (F.9) is rewritten as
5 842
1 g

om 1T Pz (5.5)

— 11 —



for a positive §2,

—~ -1 5.6
REESY (56)
for a vanishing §* and,
6 8(—4%)
— —-1- 5.7
ot q2 ) ( )
for a negative §2. Hence the deficit angle is given as
1) h?
— =1-N?|1—-4—]|. (5.8)
2 g2

This implies that the interval of the quantized deficit angle becomes narrow for 2h ~ ¢ in
the time-dependent solution. It would be interesting to investigate the consequence of this

new deficit angle.
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A. Conventions and geometrical quantities

Here, we note our conventions and several geometrical quantities.
Christoffel symbols

1
F]\N/[P = §QMQ(9QN,P + 9oP,N — gNP,Q)- (A.1)
Riemann tensor
RMnop=TNpo —TNop+ Fé;”oP%p - ngrgo- (A.2)

With this definition, the sign in front of the Einstein term in the action is a plus.
Metric
ds? = U(t,2™)(—dt* + 6;5dx'da?) + r(t)*y (™) mndz™dz™, (A.3)
where ¢, 7, ..., run over the usual three-spatial dimensions and m,n, ..., run over the extra

spatial dimensions.
Christoffel symbols

0 _ 100U? 0 19, U2
Loo =3 Uz, Lom =3 ’('}22

0 _ 18U%5 0 1 97

Pij ) U225w | Rt 32 Ymn
i _ 10U? i i 10mU?5i.
FOj_i 225] F]m_§ n[lf; 5]
m _ 10, U* mn m __ 10gr* sm
i) 2 7 Lo, =350
m _ 10, U, _mngs. m 1.m

Pij =—3 27 0ij oy =37 “(Ygn.p + Yapn — Ynp,q)
others =0
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Ricci tensors

Rog = —0% (aOTU),O + %wm"amUanU(aii —1)
Rom = <6mTU>7O — (8 +1) (a%U)m + amTUg(é% +0", —1), (A.5)
mo= (), () 0= P et
+607U¥6mm - —me::ganm)} dij , (A.6)
Ry = — (6% +1)D,, (amTU> — (6% + 1)8’”’%8’# + R™ pin
+ <2O—£> ) + 8‘%?5—2(1 +65) + <g>2 (’”]_22(5m/m, - 2)] Yonn 5 (A7)
others = 0. | (A.8)

B. Solutions for vanishing and negative g2

In this appendix, we note the solutions for the case of vanishing or negative 2. Following

GGP, by introducing the variables

T = %(ﬁ—i—lnA,
y:%q§+4an+lnA, (B.1)

z=—¢—2InW,

we obtain

dy 2
<%> +4g%e? = \3, (B.2)

and similar equations for z and z, both of which are decoupled from y [fI]. Here, A2 is a
constant for the first integral and 7 is a coordinate in the coordinate system

ds3 = W8 A%dn? + A%dy?. (B.3)
The solution for a positive g? is presented in ref. [[] as
— Incosh(a(n — ) + S In (2 (B.4)
y = —Incosh(Ao(n — o 5 In g7 ) .

However, as one can see, in section IV B, the effective g2, namely G2, can be positive
or negative in some time dependent solutions. This then means that the solution for y is

replaced with
y = Xa(n—m), (B.5)
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for the case of vanishing §? and

. 1 A2
y = —Insinh(Aa(n — n2)) + 3 In ((—4972)> , (B.6)
for a negative g2.
We then obtain
1 cosh(A1 (n—m1)) 2\ 7! e
(cosh® (A1 (n—m)) cosh(Az(n—72)))1/4 Cosh(A;(n n;)) ( ) (ﬁ) for positive g
AW* = : cosh(A (n—m)) ( > <i) ! for negative g
(cosh3 (A1 (n—m)) sinh(Aa (n—n2)))1/% sinh(A2(n—n2)) g 22 g g
1 cosh(\1 (n— 2\ L. -
(cosh3 (A1 (n—n1))e=r2(n1—n2))1/4 652(177(17"27)71)) <2(]T%) for Vamshmg g2
(B.7)
and
1 A2\ 1/2 /2 3/2 L
(cosh® (A1 (n—n1)) cosh(A2(n—12)))1/4 (ﬁ) / qu%> / or pesitive g
— 1 A2 \1/2 2\ —3/2 . ~2
A= (cosh® O (1—rm)) smb O (=) 173 <_42§2> <2ng) for negative 2 .  (B.8)

—3/2
1 2 cohing 72
e () for vanishing §

Here, A1 is a constant for the first integral with repect with x, and we used the solution of
x given in [A]. Setting \; = A2 = 1 and introducing a new coordinate dr = AW*dn, allows
us to derive the deficit angle given in eqs. (5.5), (5.6) and (b.7).
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