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1. Introduction

Six dimensional supergravity models have several interesting properties. Salam and Sezgin

obtained static solutions in which the six dimensional gauged supergravity compactifies

on a product spacetime of four dimensional Minkowski and a two dimensional sphere,

M4 × S2 [1]. Remarkably this supergravity model admits the supersymmetric Minkowski

vacuum while many other supergravity models do not. The modern interpretation of this

property is that the solution of this theory is compatible with the introduction of branes

into the spacetime. As with any massive defect, this then leads of course to the appearance

of a deficit angle in the two internal spatial dimensions, as a gravitational response to the

tensions of the branes [2, 3]. The resulting geometry looks like a rugby ball solution where

the branes are located at the north and south pole of the ball. Gibbons, Guven and Pope

(GGP) [4] showed that the Salam-Sezgin vacuum is in fact the unique one with a four

dimensional maximal symmetry and general static solutions with an axisymmetric internal

space.

The observation in ref. [4] that the four dimensional spacetime is always Minkowski

even in the presence of branes with tensions forms the basis of the interesting supersymmet-

ric large extra dimension (SLED) scenario, a recent approach to solving the cosmological
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constant and dark energy problems [3]. If only for this reason, such is the prize at stake, it

makes this six dimensional supergravity interesting from a cosmological point of view, al-

though we note that cosmology in six dimensional supergravity has previously been studied

in the context of Kaluza-Klein cosmology [5, 6]. One of the neatest aspects of the SLED

model is that a 3-brane with any tension in six dimensional spacetime induces only the cor-

responding deficit angle and maintains a vanishing four dimensional cosmological constant,

at least at the classical level. This feature is often referred to as a “self-tuning mechanism”

of the effective four dimensional cosmological constant and would be expected to be part

of the solution to the cosmological constant problem (although we still have to account for

the affect of quantum corrections).

Although the SLED scenario has enjoyed a number of successes, open questions still

remain. We are particularly interested in establishing whether the self-tuning mechanism

really works in a time dependent evolving Universe (another attempt, see [7]). Previous

authors have argued that the self-tuning of the four dimensional cosmological constant does

not work at least in non-supersymmetric six dimensional Einstein Maxwell theories [8 – 11].

The work we present here has a number of overlaps with that of Tolley et al [12], (and

more recently with that of Kobayashi and Minamitsuji [13]) who have obtained a series

of solutions to the dynamical system based on an elegant scaling argument. We believe

that the explicit expressions presented here of exact time-dependent solutions to the six

dimensional supergravity model are given for the first time. We begin by deriving the

underlying field equations in section 2. This is followed in section 3 with a demonstration

that it is impossible to have static internal spaces with a corresponding expanding external

three dimensional space. We extend the analysis to a fully time dependent case in section 4

and find a new class of exact solutions showing the nature of the instability and resulting

evolution of the compact dimensions. Finally we conclude in section 5.

2. The basic field equations

Concentrating on the bosonic field contents of this model, we have the metric gMN , dilaton

φ, a U(1) gauge field AM with field strength FMN and an antisymmetric tensor field BMN

whose corresponding field strength is expressed as

GMNP = ∂MBNP + FMNAP + cyclic permutations. (2.1)

The lagrangian density for the bosonic sector is given by

LSUGRA =
1

2
R − 1

2
∂Mφ∂Mφ − e−2φ

12
GMNP GMNP − e−φ

4
FMNFMN − 2g2eφ, (2.2)

where g is the U(1) gauge coupling.1 Here M,N run over all the spacetime indices and

we work on the two - sphere of radius r with the six dimensional (reduced) Planck scale

M6 = 1.

1Note that our definition of φ and g are different from those in GGP. They are related through −2φours =

φGGP and g2
ours = 2g2

GGP.
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The field equations are

¤φ +
e−2φ

6
GMNP GMNP +

e−φ

4
FMNFMN − 2g2eφ = 0, (2.3)

DM

(

e−2φGMNP
)

= 0, (2.4)

DM

(

e−φFMN
)

+ e−2φGMNP FMP = 0, (2.5)

−RMN + ∂Mφ∂Nφ +
e−2φ

2

(

GM
PQGNPQ − 1

6
GOPQGOPQgMN

)

+e−φ

(

FM
P FNP − 1

8
FPQFPQgMN

)

+ g2eφgMN = 0, (2.6)

and following the usual ansatz adopted for simplicity, from now on, we consider the case

of a vanishing three form field strength

GMNP = 0. (2.7)

Then, above field equations become

¤φ +
e−φ

4
FMNFMN − 2g2eφ = 0, (2.8)

DM

(

e−φFMN
)

= 0, (2.9)

−RMN + ∂Mφ∂Nφ + e−φ

(

FM
P FNP − 1

8
FPQFPQgMN

)

+ g2eφgMN = 0. (2.10)

The metric ansatz we adopt is

ds2 = U(xm, t)2ds4 + r(t)2ds2
2,

ds2
4 = −dt2 + δijdxidxj ,

ds2
2 = γmn(xm)dxmdxn, (2.11)

where i, j run over the usual three spatial indices, m,n run over the extra two spatial

indices and γmn(xm) is an arbitrary two-dimensional metric. With this metric, the two

form field strength takes the form of

Fµν = Fµm = 0 ,

Fmn = F (t, xm)ǫmn , (2.12)

with ǫmn being the anti-symmetric tensor. Here, the use of Greek indices denote the four

spacetime coordinates (i.e. µ = (0, i)). With the metric ansatz eq. (2.11), we write each

component of the Einstein equations, (0 − 0), (0 − m), (i − j), (m − n) respectively as

3

(

∂0U

U

)

,0

+ 2

[

(

∂0r

r

)

,0

− ∂0r

r

∂0U

U
+

(

∂0r

r

)2
]

+ ∂0φ∂0φ

− 2

r2
γmn∂mU∂nU − 1

2r2
Dm

(

γmn∂nU2
)

+
e−φ

8
FPQFPQU2 − g2eφU2 = 0, (2.13)

−
(

∂mU

U

)

,0

+ 4

(

∂0U

U

)

,m

− 4
∂mU

U

∂0r

r
+ ∂0φ∂mφ = 0, (2.14)
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−
(

∂0U

U

)

,0

− 2

(

∂0U

U

)2

− 2
∂0U

U

∂0r

r

+ 2
∂mU

U

∂nU

U

U2

r2
γmn +

1

2r2
Dm(γmn∂nU2) − e−φ

8
FPQFPQU2 + g2eφU2 = 0, (2.15)

−
[

(

∂0r
2

2U2

)

,0

+ 4
∂0U

U

∂0r

r

r2

U2

]

γmn + 4Dn

(

∂mU

U

)

+ 4
∂mU

U

∂nU

U
− Rm′

mm′n

+∂mφ∂nφ + e−φ

(

Fm
P FPn − 1

8
FPQFPQgmn

)

+ g2eφgmn = 0. (2.16)

2.1 The static Gibbons, Guven and Pope solution

Before discussing the time dependent solutions of this system, we recall the derivation of

the static solution originally obtained by Gibbons, Guven and Pope (GGP) [4]. When we

take r(t) = 1, U(xm, t) = W (xm) and φ = φ(xm), the Einstein equations and the equation

of motion for the dilaton φ reduce to

− 1

4W 4
Dm(γmn∂nW 4) +

e−φ

8
FPQFPQ − g2eφ = 0 , (2.17)

−4Dn

(

∂mW

W

)

− 4
∂mW

W

∂nW

W
+ Rm′

mm′n

−∂mφ∂nφ − eφ

(

Fm
P FnP − 1

8
FPQFPQγmn

)

− g2eφγmn = 0 , (2.18)

and
1

W 4
Dm

(

γmnW 4∂n
φ

2

)

+
e−φ

8
FMNFMN − g2eφ = 0 , (2.19)

leading to the GGP solution:

φ = −1

2
lnW 4. (2.20)

The equation of motion (2.9) for Fmn leads to the solution to eq. (2.12)

F = −q

2
eφW−4 = −q

2
W−6, (2.21)

where we have used eq. (2.20). Note that q can be interpreted as a magnetic charge.

It will prove useful to recall the explicit solution for φ and γmn as presented by GGP [4,

14]

γmn = diag(γrr , γψ,ψ),

(γrr, γψψ) =

(

e−φ

f2
0

,
e−φr2

f2
1

)

, (2.22)

e2φ =
f0

f1
, (2.23)

with

f0 ≡ 1 +
r2

r2
0

, f1 = 1 +
r2

r2
1

, (2.24)

r2
0 =

1

g2
, r2

1 =
8

q2
. (2.25)
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In the following sections we begin to explore the dynamical equations by allowing the

scale factors and the fields to become time dependent.

3. Only one evolving space is not a solution

3.1 Time dependent U

Ideally what we want to obtain is a solution which describes the expansion of our three

space dimensions with a static extra dimensional space. As a first step towards obtaining

it, we make the ansatz of a static internal space r = 1, and a static dilaton φ = φ(xm).

This combination makes sense in that the relation r2 ∝ e−φ has previously been obtained

in [3] hence the dilaton would be static if r is static. In fact, in the following subsection,

we will show that allowing for a time dependence of φ does not improve the possibility of

obtaining static r solutions. The field equations are reduced to

3

U2

(

∂0U

U

)

,0

− 1

4U4
Dm(γmn∂nU4) +

e−φ

8
FPQFPQ − g2eφ = 0 , (3.1)

(

∂mU

U

)

,0

− 4

(

∂0U

U

)

,m

= 0 , (3.2)

− 1

U2

(

∂0U

U

)

,0

−
(

∂0U

U

)2 2

U2
+

1

4U4
Dm(γmn∂nU4) ,−e−φ

8
FPQFPQ + g2eφ = 0 , (3.3)

4Dn

(

∂mU

U

)

+ 4
∂mU

U

∂nU

U
− Rm′

mm′n

+∂mφ∂nφ + e−φ

(

Fm
P FPn − 1

8
FPQFPQγmn

)

+ g2eφγmn = 0 , (3.4)

1

U4
Dm

(

γmnU4∂n
φ

2

)

+
e−φ

8
FMNFMN − g2eφ = 0. (3.5)

Although the equations look intractible, we can make progress by noting that because

(

∂mU

U

)

,0

=
∂0∂mU

U
− ∂0U∂mU

U2
=

(

∂0U

U

)

,m

, (3.6)

then from eq. (3.2),

(

∂mU

U

)

,0

=

(

∂0U

U

)

,m

= 0 . (3.7)

The general solution of U is therefore given by ln U = ln a(t) + lnW (xm) where a(t) and

W (xm) are integration functions. Thus, we find that U has to take the separable form of

U = a(t)W (xm). The field equations (3.1) and (3.3) can then be reduced to

C(xm) − 1

4W 4
Dm(γmn∂nW 4) +

e−φ

8
FPQFPQ − g2eφ = 0 , (3.8)

3

U2

(

∂0a

a

)

,0

=
1

U2

(

∂0a

a

)

,0

+
2

U2

(

∂0a

a

)2

= C(xm), (3.9)
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which after some algebra leads to

a(t) =
a0

t − t0
, (3.10)

C(xm) =
3

a2
0W (xm)2

, (3.11)

with a0 and t0 being integration constants.

However, from eqs. (3.1) and (3.5), we also know that

Dm

(

γmnU4∂n(ln U4 + 2φ)
)

− 4U4C(xm) = 0, (3.12)

which is conflict, for any non-vanishing U on the internal space, with the fact that the extra

two dimensional space is compact. In other words, if we integrate both sides of eq. (3.12)

over the compact extra space, we see that the first term on the left hand side vanishes as it

is a total derivative while the second term does not. Hence, there is an inconsistency and

so we conclude there is no static solution for the compact space with this ansatz for U .

There is a caveat to this argument. We have implicitly assumed that the extra space

is smooth. However, if we allow the extra space to be singular then it is possible that,

de-Sitter type solutions may be obtained [16].

3.2 Time dependent U and φ, but static r

We now allow for a time-dependent dilaton. The field equations are

3

(

∂0U

U

)

,0

+ ∂0φ∂0φ − 1

4U2
Dm

(

γmn∂nU4
)

+
e−φ

8
FPQFPQU2 − g2eφU2 = 0, (3.13)

−
(

∂mU

U

)

,0

+ 4

(

∂0U

U

)

,m

+ ∂0φ∂mφ = 0, (3.14)

(

∂0U

U

)

,0

+ 2

(

∂0U

U

)2

− 1

4U2
Dm

(

γmn∂nU4
)

+
e−φ

8
FPQFPQU2 − g2eφU2 = 0, (3.15)

4Dn

(

∂mU

U

)

+ 4
∂mU

U

∂nU

U
− Rm′

mm′n

+∂mφ∂nφ + e−φ

(

Fm
P FPn − 1

8
FPQFPQgmn

)

+ g2eφgmn = 0, (3.16)

− 1

U4
∂0

(

U2∂0
φ

2

)

+
1

U4
Dm

(

U4γmn∂n
φ

2

)

+
e−φ

8
FMNFMN − g2eφ = 0. (3.17)

If we again assume the form U = a(t)W (xm), then the (0−m) component of the Einstein

equation implies φ = φ(t). In addition, from the φ equation of motion, using the solution

for the flux F ∝ U(t, xm)−4 , we find that W = 1 because each term has a different

dependence on W and the φ equation of motion can not be satisfied if U depends on xm.

Hence we must have U = a(t) and moreover since the spacetime no longer has a non-trivial

warp factor W (xm), it can not be warped. Given the above result, the equations of motion

– 6 –
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now can be written as:

3

(

∂0a

a

)

,0

+ ∂0φ∂0φ +
e−φ

8
FPQFPQa2 − g2eφa2 = 0, (3.18)

(

∂0a

a

)

,0

+ 2

(

∂0a

a

)2

+
e−φ

8
FPQFPQa2 − g2eφa2 = 0, (3.19)

− 1

a2
∂0

(

a2∂0
φ

2

)

+
e−φ

8
FMNFMNa2 − g2eφa2 = 0, (3.20)

3

4
e−φFPQFPQ + 2g2eφ = gmnRm′

mm′n(xm) ≡ Rc(= const). (3.21)

Notice that the term gmnRm′

mm′n could in principle be a function of xm, but in this case

it is not allowed by eq. (3.21) as the left hand side depends only on t. This fact means

that the compact extra space must be a constant curvature two dimensional sphere. Here

there is no way to introduce branes which induce a deficit angle and deform a sphere with a

constant curvature into a rugby ball shape. Therefore, we can see that this ansatz, namely

varying U and φ with static r can not lead to satisfactory solutions.

3.3 Time dependent r and φ, but static U

Finally, let us try to obtain a solution of the static three space with a dynamical extra

dimension. If we take r = r(t) and φ = φ(t, xm), but U = W (xm), then Einstein’s

equations and the equation of motion for φ are

2

[

(

∂0r

r

)

,0

+

(

∂0r

r

)2
]

+ ∂0φ∂0φ − Dm(γmn∂nW 4)

4r2W 4
+

e−φ

8
FPQFPQ − g2eφ = 0 , (3.22)

−4
∂mW

W

∂0r

r
+ ∂0φ∂mφ = 0 , (3.23)

Dm(γmn∂nW 4)

4r2W 4
− e−φ

8
FPQFPQ + g2eφ = 0 , (3.24)

4Dn

(

∂mW

W

)

+ 4
∂mW

W

∂nW

W
− Rm′

mm′n − 1

2U2

(

∂0r
2
)

,0
γmn

+∂mφ∂nφ + e−φ

(

Fm
P FPn − 1

8
FPQFPQgmn

)

+ g2eφgmn = 0 , (3.25)

− 1

W 2r2
∂0

(

r2∂0
φ

2

)

+
1

W 4r2
Dm

(

W 4γmn∂n
φ

2

)

+
e−φ

8
FMNFMN − g2eφ = 0. (3.26)

Now provided that φ(t, xm) can be decomposed as φ(t, xm) = φ(t)+φ(xm) and F depends

only on xm, then eqs. (3.22) and (3.24) can be reduced to

r(t)2eφ(t) = 1, (3.27)
(

∂0r

r

)

,0

+

(

∂0r

r

)2

+
1

2
∂0φ∂0φ = 0 , (3.28)

Dm(γmn∂nW 4)

4W 4
− e−φ(xm)

8
FPQFPQ + g2eφ(xm) = 0. (3.29)
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Unfortunately, the solution of these equations are not compatible with

∂0r
2 = 0, (3.30)

which can be obtained from eq. (3.26) using eq. (3.27). Thus, we once again see that there

is no consistent solution with this ansatz.

4. Time dependent solutions with dymanical r, U and φ

Having tried unsuccessfully to obtain static solutions for r and U , we now look for dynamical

solutions where all the key fields r, U and φ are time dependent. We again make a series

of ansatz, in this case φ(t, xm) = φ(t) + φ(xm), and assume the separable form of U =

a(t)W (xm). The Einstein equations and the equation of motion for φ are:

3

U2

(

∂0a

a

)

,0

+
2

U2

[

(

∂0r

r

)

,0

− ∂0r

r

∂0a

a
+

(

∂0r

r

)2
]

+
∂0φ∂0φ

U2

− 1

4r2W 4
Dm

(

γmn∂nW 4
)

+
e−φ

8
FPQFPQ − g2eφ = 0 , (4.1)

−4
∂mW

W

∂0r

r
+ ∂0φ∂mφ = 0 , (4.2)

1

U2

(

∂0a

a

)

,0

+
2

U2

(

∂0a

a

)2

+
2

U2

∂0a

a

∂0r

r

− 1

4r2W 4
Dm(γmn∂nW 4) +

e−φ

8
FPQFPQ − g2eφ = 0 , (4.3)

4Dn

(

∂mW

W

)

+ 4
∂mW

W

∂nW

W
− Rm′

mm′n −
[

(

∂0r
2

2W 2

)

,0

+ 4
∂0a

a

∂0r

r

r2

U2

]

γmn

+∂mφ∂nφ + e−φ

(

Fm
P FPn − 1

8
FPQFPQgmn

)

+ g2eφgmn = 0 , (4.4)

− 1

U4r2
∂0

(

r2U2∂0
φ

2

)

+
1

W 4r2
Dm

(

W 4γmn∂n
φ

2

)

+
e−φ

8
FMNFMN − g2eφ = 0. (4.5)

Under the additional ansatz that eφ(t)r2 = 1 (motivated by the observation that r2 ∝
e−φ [3]), which is equivalent to

∂0φ = −2
∂0r

r
, (4.6)

we see that eq. (4.2), leads to

∂mφ = −2
∂mW

W
, (4.7)

as in the GGP solution. If we further assume that the field strength F is static and only

depends on xm, then the field equations eqs. (4.1), (4.3) and (4.5) coupled with eq. (4.7)

can be rewritten as the following differential equation which depends only on xm,

C(xm) − Dm(γmn∂nW 4)

4W 4
+

e−φr2

8
FPQFPQ − g2eφr2 = 0 , (4.8)

– 8 –
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where, C(xm) is given by

C(xm) =
r2

U2

[

3

(

∂0a

a

)

,0

+ 2

(

∂0r

r

)

,0

− 2
∂0r

r

∂0a

a
+ 2

(

∂0r

r

)2

+ ∂0φ∂0φ

]

=
r2

U2

[

(

∂0a

a

)

,0

+ 2

(

∂0a

a

)2

+ 2
∂0a

a

∂0r

r

]

= − 1

U4
∂0

(

r2U2∂0
φ

2

)

, (4.9)

each equality in eq. (4.9) arising from eqs. (4.1), (4.3) and (4.5), respectively.

4.1 Power law solutions for r and a

Eqs. (4.8) and (4.9) still look very difficult to solve directly from first principles, and so

instead we will try to obtain solutions by assuming the form of r and a, and looking for

self-consistency in the solutions. As a first attempt we assume power law behaviour for

them, namely:

a ∝ tn, r ∝ tnr . (4.10)

The three equalities in eq. (4.9) coupled with eq. (4.6) now become

C(xm) =
t2(nr−n−1)

W 2
(−3n − 2nr − 2nrn + 6n2

r)

=
t2(nr−n−1)

W 2
nr(2n + 2nr − 1)

=
t2(nr−n−1)

W 2
n(2n + 2nr − 1). (4.11)

There are two possible ways in which C(xm) can be a function of only xm, as required

by eq. (4.8). The first is if the time dependent prefactor vanishes which corresponds to

nr −n− 1 = 0. The second way is if the right hand side of each of the terms vanish, which

corresponds to the brackets vanishing in eq. (4.11). The former is precisely the structure

found by Tolley et al [12] based on a scaling argument for the scale factors. However, the

metric ansatz of gµν in [12] is slightly different to ours (2.11). In particular it follows that

the condition nr − n − 1 = 0 is not a solution in our case, because it can not satisfy all

three equalities in eqs. (4.11). In fact we determine the values of n and ns in eqs. (4.11)

by equating the coefficients:

−3n − 2nr − 2nrn + 6n2
r = nr(2n + 2nr − 1) = n(2n + 2nr − 1). (4.12)

This has the non trivial solution

n =
2 ±

√
3

4
, nr = ∓

√
3

4
. (4.13)

This in turn gives C(xm) = 0 which is consistent with the above discussions and is com-

patible with eq. (4.4) too, because the solution satisfies
(

∂0r
2

2a2

)

,0

+ 4
∂0a

a

∂0r

r

r2

a2
= 0. (4.14)
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Notice that in this case, we obtain identical solutions for F , φ and W as found in the

GGP solution. This is as expected, since the xm dependent part of the field equations are

identical to that of the GGP solution. In this sense we have obtained the time dependent

version of the GGP solution.

From the metric ansatz eq. (2.11) it follows that the time t is actually the conformal

time in the usual sense. The “cosmic time” τ can therefore be defined as dτ ∝ tndt, from

which we obtain

ds2 = W (xm)2[−dτ2 + a(τ)2δijdxidxj ] + r(τ)2ds2
2,

a(τ) ∝ τn/(n+1),

r(τ) ∝ τnr/(n+1), (4.15)

in terms of the cosmic time.

4.2 Exponential solutions for r and a

The next obvious step is to assume an exponential form

a(t) = eht, r(t) = ehrt, (4.16)

where h and hr are constants. In this case, eq. (4.9) with eq. (4.6) leads to

C(xm) =
e2(hr−h)t

W 2
2hr(−h + 3hr)

=
e2(hr−h)t

W 2
2hr(h + hr)

=
e2(hr−h)t

W 2
2h(h + hr). (4.17)

which now has a non trivial solution h = hr. Then, C(xm) is given by

C(xm) =
4h2

W (xm)2
. (4.18)

Thus, we obtain the equations of motion of the xm dependent part of the fields to be

4h2

W (xm)2
− Dm(γmn∂nW 4)

4W 4
+

e−φ(xm)

8
FPQFPQ − g2eφ(xm) = 0, (4.19)

4h2

W (xm)2
γmn − ∂mφ∂nφ−e−φ(xm)

(

Fm
P FPn−

1

8
FPQFPQγmn

)

−g2eφ(xm)γmn = 0. .(4.20)

Something significant can now be seen. Recall that we have equation (4.7), relating φ and

W (xm). Given the solution we have just obtained, we see that in eq. (4.20), by introducing

g̃2 ≡ g2 − 4h2, then a new solution to the system is obtained which looks identical to the

original xm part of the GGP solution but with our redefined gauge coupling g̃2 replacing

the original g2 coupling. Obviously, the h → 0 limit corresponds to the original static GGP

solution. Hence, we have obtained the explicit expression of the solution including the xm

dependent part. However, notice that since h is just a constant it could in principle take
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any value. In particular, for 4h2 > g2, corresponding to a negative g̃2, we find that the

xm dependent part of the solution has only differs slightly from that obtained in GGP. We

show this and give the actual solution for the case of vanishing and negative g̃2 in appendix

B. The line element of this solution with such a nonvanishing h is rewritten as

ds2 = W (xm)2[−dτ2 + (hτ)2δijdxidxj ] + (hτ)2ds2
2, (4.21)

in terms of the cosmic time. This solution is the same as that found in ref. [12], however,

the xm dependence of the solution was not explicitely solved for there. Here, we have

shown that it is same as that of the GGP solution.

5. Conclusions

We have derived a new class of exact time dependent solutions in a six dimensional gauged

supergravity compactified on a two dimensional axisymmetric space. Under the assumption

of a separable form of U we showed that there is no solution expressing the either an

expanding four dimensional universe with a static internal space or visa versa. Exact

solutions we obtained involved all the dimensions either expanding or contracting which

means the eventual decompactification or collapse of the extra dimension, indicating an

instability of Salam-Sezgin, (Minkowski)4 × S2, spacetime for the case with the absence of

the maximal symmetry in the four dimensional spacetime.

In the above analysis, we did not include into the action brane terms such as

Sbrane =
∑

i

∫

d4xTi =
∑

i

∫

d6xTiδ
(2)(xm − xm

i ) , (5.1)

where Ti is the tension of the ‘i-th’ brane and xm
i denotes the position of the brane in the

internal space. However, we can easily introduce such brane terms, their affect being to

induce the deficit angle in the internal space. The topological condition for the gauge field

AM is the same as we previously obtained for the static solutions, because the solution of

the gauge field strength Fmn is unchanged in the presence of the branes. As is discussed

in [4], for the case of r2
0 6= r2

1 in eq. (2.24), while one pole can be smooth, the other has a

deficit angle
δ

2π
= 1 − r2

1

r2
0

. (5.2)

Combining eq. (2.25) and the topological condition, the Dirac quantization condition, for

the gauge field AM becomes [4, 15],
4g

q
= N, (5.3)

leading to the quantized deficit angle

δ

2π
= 1 − N2 , (5.4)

which was previously obtained for the static solution with N being an integer [4]. However,

for the new solution in section IV B, eq. (5.2) is rewritten as

δ

2π
= 1 − 8g̃2

q2
, (5.5)
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for a positive g̃2,
δ

2π
= 1 , (5.6)

for a vanishing g̃2 and,
δ

2π
= 1 − 8(−g̃2)

q2
, (5.7)

for a negative g̃2. Hence the deficit angle is given as

δ

2π
= 1 − N2

∣

∣

∣

∣

1 − 4
h2

g2

∣

∣

∣

∣

. (5.8)

This implies that the interval of the quantized deficit angle becomes narrow for 2h ≈ g in

the time-dependent solution. It would be interesting to investigate the consequence of this

new deficit angle.
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A. Conventions and geometrical quantities

Here, we note our conventions and several geometrical quantities.

Christoffel symbols

ΓM
NP =

1

2
gMQ(gQN,P + gQP,N − gNP,Q). (A.1)

Riemann tensor

RM
NOP = ΓM

NP,O − ΓM
NO,P + ΓM

QOΓQ
NP − ΓM

QP ΓQ
NO. (A.2)

With this definition, the sign in front of the Einstein term in the action is a plus.

Metric

ds2 = U2(t, xm)(−dt2 + δijdxidxj) + r(t)2γ(xm)mndxmdxn, (A.3)

where i, j, . . . , run over the usual three-spatial dimensions and m,n, . . . , run over the extra

spatial dimensions.

Christoffel symbols

Γ0
00 = 1

2
∂0U2

U2 Γ0
0m = 1

2
∂mU2

U2

Γ0
ij = 1

2
∂0U2

U2 δij Γ0
mn = 1

2
∂0r2

U2 γmn

Γi
0j = 1

2
∂0U2

U2 δi
j Γi

jm = 1
2

∂mU2

U2 δi
j

Γm
00 = 1

2
∂nU2

r2 γmn Γm
0n = 1

2
∂0r2

r2 δm
n

Γm
ij = −1

2
∂nU2

r2 γmnδij Γm
np = 1

2γmq(γqn,p + γqp,n − γnp,q)

others = 0
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Ricci tensors

R00 = −δi
i

(

∂0U

U

)

,0

+
1

r2
γmn∂mU∂nU(δi

i − 1)

+

[

−
(

∂0r

r

)

,0

+
∂0r

r

∂0U

U
−

(

∂0r

r

)2
]

δn
n +

Dm

(

γmn∂nU2
)

2r2
, (A.4)

R0m =

(

∂mU

U

)

,0

− (δi
i + 1)

(

∂0U

U

)

,m

+
∂mU

U

∂0r

r
(δi

i + δn
n − 1) , (A.5)

Rij =

[

(

∂0U

U

)

,0

+

(

∂0U

U

)2

(δk
k − 1) − ∂mU

U

∂nU

U

U2

r2
γmn(δk

k − 1)

+
∂0U

U

∂0r

r
δm

m − Dm(γmn∂nU2)

2r2

]

δij , (A.6)

Rmn = −(δi
i + 1)Dn

(

∂mU

U

)

− (δi
i + 1)

∂mU

U

∂nU

U
+ Rm′

mm′n

+

[

(

∂0r
2

2U2

)

,0

+
∂0U

U

∂0r

r

r2

U2
(1 + δi

i) +

(

∂0r

r

)2
r2

U2
(δm′

m′ − 2)

]

γmn , (A.7)

others = 0. (A.8)

B. Solutions for vanishing and negative g̃2

In this appendix, we note the solutions for the case of vanishing or negative g̃2. Following

GGP, by introducing the variables

x =
1

2
φ + ln A,

y =
1

2
φ + 4 ln W + ln A, (B.1)

z = −φ − 2 ln W,

we obtain
(

dy

dη

)2

+ 4g2e2y = λ2
2, (B.2)

and similar equations for x and z, both of which are decoupled from y [4]. Here, λ2 is a

constant for the first integral and η is a coordinate in the coordinate system

ds2
2 = W 8A2dη2 + A2dψ2. (B.3)

The solution for a positive g2 is presented in ref. [4] as

y = − ln cosh(λ2(η − η2)) +
1

2
ln

(

λ2
2

(4g2)

)

. (B.4)

However, as one can see, in section IV B, the effective g2, namely g̃2, can be positive

or negative in some time dependent solutions. This then means that the solution for y is

replaced with

y = λ2(η − η2), (B.5)
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for the case of vanishing g̃2 and

y = − ln sinh(λ2(η − η2)) +
1

2
ln

(

λ2
2

(−4g̃2)

)

, (B.6)

for a negative g̃2.

We then obtain

AW 4 =























1
(cosh3(λ1(η−η1)) cosh(λ2(η−η2)))1/4

cosh(λ1(η−η1))
cosh(λ2(η−η2))

(

λ2
2

4g̃2

) (

q2

2λ2
1

)−1
for positive g̃2

1
(cosh3(λ1(η−η1)) sinh(λ2(η−η2)))1/4

cosh(λ1(η−η1))
sinh(λ2(η−η2))

(

λ2
2

−4g̃2

) (

q2

2λ2
1

)−1
for negative g̃2

1
(cosh3(λ1(η−η1))e−λ2(η−η2))1/4

cosh(λ1(η−η1))

eλ2(η−η2)

(

q2

2λ2
1

)−1
for vanishing g̃2

.

(B.7)

and

A =























1
(cosh3(λ1(η−η1)) cosh(λ2(η−η2)))1/4

(

λ2
2

4g̃2

)1/2 (

q2

2λ2
1

)−3/2
for positive g̃2

1
(cosh3(λ1(η−η1)) sinh(λ2(η−η2)))1/4

(

λ2
2

−4g̃2

)1/2 (

q2

2λ2
1

)−3/2
for negative g̃2

1
(cosh3(λ1(η−η1))e−λ2(η−η2))1/4

(

q2

2λ2
1

)−3/2
for vanishing g̃2

. (B.8)

Here, λ1 is a constant for the first integral with repect with x, and we used the solution of

x given in [4]. Setting λ1 = λ2 = 1 and introducing a new coordinate dr = AW 4dη, allows

us to derive the deficit angle given in eqs. (5.5), (5.6) and (5.7).
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